1911年,荷蘭萊頓大學的卡茂林-昂尼斯意外地發現,將汞冷卻到-268.98℃時,汞的電阻突然消失;後來他又發現許多金屬和合金都具有與上述汞相類似的低溫下失去電阻的特性,由於它的特殊導電性能,卡茂林-昂尼斯稱之為超導態。卡茂林由於他的這壹發現獲得了1913年諾貝爾獎。
這壹發現引起了世界範圍內的震動。在他之後,人們開始把處於超導狀態的導體稱之為“超導體”。超導體的直流電阻率在壹定的低溫下突然消失,被稱作零電阻效應。導體沒有了電阻,電流流經超導體時就不發生熱損耗,電流可以毫無阻力地在導線中流大的電流,從而產生超強磁場。1933年,荷蘭的邁斯納和奧森菲爾德***同發現了超導體的另壹個極為重要的性質,當金屬處在超導狀態時,這壹超導體內的磁感應強度為零,卻把原來存在於體內的磁場排擠出去。對單晶錫球進行實驗發現:錫球過渡到超導態時,錫球周圍的磁場突然發生變化,磁力線似乎壹下子被排斥到超導體之外去了,人們將這種現象稱之為“邁斯納效應”。
後來人們還做過這樣壹個實驗:在壹個淺平的錫盤中,放入壹個體積很小但磁性很強的永久磁體,然後把溫度降低,使錫盤出現超導性,這時可以看到,小磁鐵竟然離開錫盤表面,慢慢地飄起,懸空不動。
邁斯納效應有著重要的意義,它可以用來判別物質是否具有超導性。
為了使超導材料有實用性,人們開始了探索高溫超導的歷程,從1911年至1986年,超導溫度由水銀的4.2K提高到23.22K(絕對零度代號為 K = -273.16攝氏度)。86年1月發現鋇鑭銅氧化物超導溫度是30K,12月30日,又將這壹紀錄刷新為40.2K,87年1月升至43K,不久又升至46K和53K,2月15日發現了98K超導體,很快又發現了14℃下存在超導跡象,高溫超導體取得了巨大突破,使超導技術走向大規模應用。
超導材料和超導技術有著廣闊的應用前景。超導現象中的邁斯納效應使人們可以到用此原理制造超導列車和超導船,由於這些交通工具將在無摩擦狀態下運行,這將大大提高它們的速度和安全性能。超導列車已於70年代成功地進行了載人可行性試驗,1987年開始,日本開始試運行,但經常出現失效現象,出現這種現象可能是由於高速行駛產生的顛簸造成的。超導船已於1992年1月27日下水試航,目前尚未進入實用化階段。利用超導材料制造交通工具在技術上還存在壹定的障礙,但它勢必會引發交通工具革命的壹次浪潮。
超導材料的零電阻特性可以用來輸電和制造大型磁體。超高壓輸電會有很大的損耗,而利用超導體則可最大限度地降低損耗,但由於臨界溫度較高的超導體還未進入實用階段,從而限制了超導輸電的采用。隨著技術的發展,新超導材料的不斷湧現,超導輸電的希望能在不久的將來得以實現。
現有的高溫超導體還處於必須用液態氮來冷卻的狀態,但它仍舊被認為是20世紀最偉大的發現之壹。 1、比爾·李
1911年,荷蘭科學家昂內斯用液氦冷卻水銀,當溫度下降到4.2K時發現水銀的電阻完全消失,這種現象稱為超導電性。1933年,邁斯納和奧克森菲爾德兩位科學家發現了這種現象稱為之為抗磁性。
超導電性和抗磁性是超導體的兩個重要特性。使超導體電阻為零的溫度,叫超導臨界溫度。經過科學家們數十年的努力,超導材料的磁電障礙已被跨越,接下來的難關是突破溫度障礙,就是尋求高溫超導材料。
2、奇異的超導陶瓷
1973年,人們發現了超導合金――鈮鍺合金,其臨界超導溫度為23.2K,該記錄保持了13年。1986年,設在瑞士蘇黎世的美國IBM公司的研究中心報道了壹種氧化物(鑭-鋇-銅-氧)具有35K的高溫超導性,打破了傳統“氧化物陶瓷是絕緣體”的觀念,引起世界科學界的轟動。此後,科學家們爭分奪秒地攻關,幾乎每隔幾天,就有新的研究成果出現。
1986年底,美國貝爾實驗室研究的氧化物超導材料,其臨界超導溫度達到40K,液氫的“溫度壁壘”(40K)被跨越。1987年2月,美國華裔科學家朱經武和中國科學家趙忠賢相繼在釔-鋇-銅-氧系材料上把臨界超導溫度提高到90K以上,液氮的禁區(77K)也奇跡般地被突破了。1987年底,鉈-鋇-鈣-銅-氧系材料又把臨界超導溫度的記錄提高到125K。從1986-1987年的短短壹年多的時間裏,臨界超導溫度竟然提高了100K以上,這在材料發展史,乃至科技發展史上都堪稱是壹大奇跡!高溫超導材料的不斷問世,為超導材料從實驗室走向應用鋪平了道路。