當前位置:律師網大全 - 專利申請 - 有限元的發展

有限元的發展

概述:

隨著計算機技術的迅速發展,在工程領域中,有限元分析(FEA)越來越多地用於仿真模擬,來求解真實的工程問題。這些年來,越來越多的工程師、應用數學家和物理學家已經證明這種采用求解偏微分方程(PDE)的方法可以求解許多物理現象,這些偏微分方程可以用來描述流動、電磁場以及結構力學等等。有限元方法用來將這些眾所周知的數學方程轉化為近似的數字式圖象。

早期的有限元主要關註於某個專業領域,比如應力或疲勞,但是,壹般來說,物理現象都不是單獨存在的。例如,只要運動就會產生熱,而熱反過來又影響壹些材料屬性,如電導率、化學反應速率、流體的粘性等等。這種物理系統的耦合就是我們所說的多物理場,分析起來比我們單獨去分析壹個物理場要復雜得多。很明顯,我們需要壹個多物理場分析工具。

在上個世紀90年代以前,由於計算機資源的缺乏,多物理場模擬僅僅停留在理論階段,有限元建模也局限於對單個物理場的模擬,最常見的也就是對力學、傳熱、流體以及電磁場的模擬。看起來有限元仿真的命運好像也就是對單個物理場的模擬。

這種情況已經開始改變。經過數十年的努力,計算科學的發展為我們提供了更靈巧簡潔而又快速的算法,更強勁的硬件配置,使得對多物理場的有限元模擬成為可能。新興的有限元方法為多物理場分析提供了壹個新的機遇,滿足了工程師對真實物理系統的求解需要。有限元的未來在於多物理場求解。

千言萬語道不盡,下面只能通過幾個例子來展示多物理場的有限元分析在未來的壹些潛在應用。

壓電擴音器(Piezoacoustic transducer)可以將電流轉換為聲學壓力場,或者反過來,將聲場轉換為電流場。這種裝置壹般用在空氣或者液體中的聲源裝置上,比如相控陣麥克風,超聲生物成像儀,聲納傳感器,聲學生物治療儀等,也可用在壹些機械裝置比如噴墨機和壓電馬達等。

壓電擴音器涉及到三個不同的物理場:結構場,電場以及流體中的聲場。只有具有多物理場分析能力的軟件才能求解這個模型。

壓電材料選用PZT5-H晶體,這種材料在壓電傳感器中用得比較廣泛。在空氣和晶體的交界面處,將聲場邊界條件設置為壓力等於結構場的法向加速度,這樣可以將壓力傳到空氣中去。另外,晶體域中又會因為空氣壓力對其的影響而產生變形。仿真研究了在施加壹個幅值200V,震蕩頻率為300 KHz的電流後,晶體產生的聲波傳播。這個模型的描述及其完美的結果表明在任何復雜的模型下,我們都可以用壹系列的數學模型進行表達,進而求解。

多物理場建模的另外壹個優勢就是在學校裏,學生們直觀地獲取了以前無法見到的壹些現象,而簡單易懂的表達方式也獲得了學生們的好感。這只是Krishan Kumar Bhatia博士在紐約Glassboro的Rowan 大學給高年級的畢業生講授傳熱方程課程時介紹建模及分析工具所感受到的,他的學生的課題是如何冷卻壹個摩托車的發動機箱。Bhatia博士教他們如何利用“設計-制造-檢測”的理念來判斷問題、找出問題、解決問題。如果沒有計算機仿真的應用,這種方法在課堂上推廣是不可想象的,因為所需費用實在是太大了。

COMSOL Multiphysics擁有優秀的用戶界面,可以使學生方便地設置傳熱問題,並很快得到所需要的結果。“我的目標是使每個學生都能了解偏微分方程,當下次再遇到這樣的問題時,他們不會再擔心,” Bhatia博士說,“這不需要了解太多的分析工具,總的來說,學生都反映‘這個建模工具太棒了’”。

很多優秀的高科技工程公司已經看到多物理場建模可以幫助他們保持競爭力。多物理場建模工具可以讓工程師進行更多的虛擬分析而不是每次都需要進行實物測試。這樣,他們就可以快速而經濟地優化產品。在印度尼西亞的Medrad Innovations Group中,由John Kalafut博士帶領著壹個研究小組,采用多物理場分析工具來研究細長的註射器中血細胞的註射過程,這是壹種非牛頓流體,而且具有很高的剪切速率。

通過這項研究,Medrad的工程師制造了壹個新穎的裝置稱為先鋒型血管造影導管(Vanguard Dx Angiographic Catheter)。同采用尖噴嘴的傳統導管相比,采用擴散型噴嘴的新導管使得造影劑分布得更加均勻。造影劑就是在進行X光拍照時,將病變的器官顯示得更加清楚的特殊材料。

另外壹個問題就是傳統導管在使用過程中可能會使得造影劑產生很大的速度,進而可能會損傷血管。先鋒型血管造影導管降低了造影劑對血管產生的沖擊力,將血管損傷的可能性降至最低。

關鍵的問題就是如何去設計導管的噴嘴形狀,使其既能優化流體速度又能減少結構變形。Kalafut的研究小組利用多物理場建模方法將層流產生的力耦合到應力應變分 析中去,進而對各種不同噴嘴的形狀、布局進行流固耦合分析。“我們的壹個實習生針對不同的流體區域建立不同的噴嘴布局,並進行了分析,” Kalafut博士說,“我們利用這些分析結果來評估這些新想法的可行性,進而降低實體模型制造次數”。

摩擦攪拌焊接(FSW),自從1991年被申請專利以來,已經廣泛應用於鋁合金的焊接。航空工業最先開始采用這些技術,正在研究如何利用它來降低制造成本。在摩擦攪拌焊接的過程中,壹個圓柱狀具有軸肩和攪拌頭的刀具旋轉插入兩片金屬的連接處。旋轉的軸肩和攪拌頭用來生熱,但是這個熱還不足以融化金屬。反之,軟化呈塑性的金屬會形成壹道堅實的屏障,會阻止氧氣氧化金屬和氣泡的形成。粉碎,攪拌和擠壓的動作可以使焊縫處的結構比原先的金屬結構還要好,強度甚至可以到原來的兩倍。這種焊接裝置甚至可以用於不同類型的鋁合金焊接。

空中客車(AirBus)資助了很多關於摩擦攪拌焊接的研究。在制造商大規模投資和重組生產線之前,Cranfield大學的Paul Colegrove博士利用多物理場分析工具幫助他們理解了加工過程。

第壹個研究成果是壹個摩擦攪拌焊接的數學模型,這讓空客的工程師“透視”到焊縫中來檢查溫度分布和微結構的變化。Colegrove博士和他的研究小組還編寫了壹個帶有圖形界面的仿真工具,這樣空客的工程師可以直接提取材料的熱力屬性以及焊縫極限強度。

在這個摩擦攪拌焊接的模擬過程中,將三維的傳熱分析和二維軸對稱的渦流模擬耦合起來。傳熱分析計算在刀具表面施加熱流密度後,結構的熱分布。可以提取出刀具的位移,熱邊界條件,以及焊接處材料的熱學屬性。接下來將刀具表面處的三維熱分布映射到二維模型上。耦合起來的模型就可以計算在加工過程中熱和流體之間的相互作用。

將基片的電磁、電阻以及傳熱行為耦合起來需要壹個真正的多物理場分析工具。壹個典型的應用是在半導體的加工和退火的工藝中,有壹種利用感應加熱的熱壁熔爐,它用來讓半導體晶圓生長,這是電子行業中的壹項關鍵技術。

例如,金剛砂在2,000°C的高溫環境下可以取代石墨接收器,接收器由功率接近10KW的射頻裝置加熱。在如此高溫下要保持爐內溫度的均勻,爐腔的設計至關重要。經過多物理場分析工具的分析,發現熱量主要是通過輻射的方式進行傳播的。在模型內不僅可以看到晶圓表面溫度的分布,還可以看到熔爐的石英管上的溫度分布。

在電路設計中,影響材料選擇的重要方面是材料的耐久性和使用壽命。電器小型化的趨勢使得可在電路板上安裝的電子元件發展迅猛。眾所周知,安裝在電路板上的電阻以及其他壹些元件會產生大量的熱,進而可能使得元件的焊腳處產生裂縫,最後導致整個電路板報廢。

多物理場分析工具可以分析出整個電路板上熱量的轉移,結構的應力變化以及由於溫度的上升導致的變形。這樣做可以用來提升電路板設計的合理性以及材料選擇的合理性。

計算機能力的提升使得有限元分析由單場分析到多場分析變成現實,未來的幾年內,多物理場分析工具將會給學術界和工程界帶來震驚。單調的“設計-校驗”的設計方法將會慢慢被淘汰,虛擬造型技術將讓妳的思想走得更遠,通過模擬仿真將會點燃創新的火花。

自2000年以來,國內外對非線性結構問題的數值解法做了大量的研究。修正的牛頓-拉普森叠代法的出現,為保證計算精度提供了保障。但是,對求解結構極限強度而言,這種方法仍很難找到極限點。Wright&Gaylord發展了假想彈簧法以保證後極限強度區域結構剛度矩陣的正定,並成功應用於框架結構的分析。Bergan等提出了當前剛度參數法,來抑制臨界區域的平衡叠代進而穿越極限點。Batoz提出了位移控制法,通過施加已知位移變化過程反求結構內力,從而穿越極限點求出結構的後極限強度響應。Riks首次提出弧長控制法,1981年由Crisfield、Ramm、Powell和Simons等人做了改進,並與修正的牛頓-拉普森法相結合,成功地實現了求解後極限平衡路徑中的“階躍”(Snap-through)問題。高素荷等人對網格劃分密度與有限元求解精度的關系進行了研究。通過對不同網格密度、不同單元類型的有限元力學模型計算結果與精確解的分析比較,探索研究單元網格劃分與有限元求解精度的內在聯系,為在保證有限元解滿足工程實際精度要求的前提下,確定合理的網格密度,提高有限元分析效率進行了有益的探索。研究證明:對於幾何尖角處、應力應變變化較大區域,有限元分析時應選擇高階次單元,並適當增加單元網格密度。這樣,既可保證單元的形狀,同時,又可提高求解精度、準確性及加快收斂速度。全自動劃分網格時,優先考慮選用高階單元。在網格劃分和初步求解時,應做到先簡後繁,先粗後精。由於工程結構壹般具有重復對稱或軸對稱、鏡象對稱等特點,為提高求解效率,應充分利用重復與對稱等特征,采用子結構或對稱模型以提高求解效率和精度。

  • 上一篇:為什麽人活得那麽累,還不至於死於匱乏!為什麽說錢如糞土,其實都是在撈!
  • 下一篇:電影《辛德勒的名單》欣賞
  • copyright 2024律師網大全