1947年12月,美國貝爾實驗室的肖克利、巴丁和布拉頓組成的研究小組,研制出壹種點接觸型的鍺晶體管。晶體管的問世,是20世紀的壹項重大發明,是微電子革命的先聲。晶體管出現後,人們就能用壹個小巧的、消耗功率低的電子器件,來代替體積大、功率消耗大的電子管了。晶體管的發明又為後來集成電路的誕生吹響了號角。20世紀最初的10年,通信系統已開始應用半導體材料。20世紀上半葉,在無線電愛好者中廣泛流行的礦石收音機,就采用礦石這種半導體材料進行檢波。半導體的電學特性也在電話系統中得到了應用。
晶體管的發明,最早可以追溯到1929年,當時工程師利蓮費爾德就已經取得壹種晶體管的專利。但是,限於當時的技術水平,制造這種器件的材料達不到足夠的純度,而使這種晶體管無法制造出來。
由於電子管處理高頻信號的效果不理想,人們就設法改進礦石收音機中所用的礦石觸須式檢波器。在這種檢波器裏,有壹根與礦石(半導體)表面相接觸的金屬絲(像頭發壹樣細且能形成檢波接點),它既能讓信號電流沿壹個方向流動,又能阻止信號電流朝相反方向流動。在第二次世界大戰爆發前夕,貝爾實驗室在尋找比早期使用的方鉛礦晶體性能更好的檢波材料時,發現摻有某種極微量雜質的鍺晶體的性能不僅優於礦石晶體,而且在某些方面比電子管整流器還要好。
在第二次世界大戰期間,不少實驗室在有關矽和鍺材料的制造和理論研究方面,也取得了不少成績,這就為晶體管的發明奠定了基礎。
為了克服電子管的局限性,第二次世界大戰結束後,貝爾實驗室加緊了對固體電子器件的基礎研究。肖克萊等人決定集中研究矽、鍺等半導體材料,探討用半導體材料制作放大器件的可能性。
1945年秋天,貝爾實驗室成立了以肖克萊為首的半導體研究小組,成員有布拉頓、巴丁等人。布拉頓早在1929年就開始在這個實驗室工作,長期從事半導體的研究,積累了豐富的經驗。他們經過壹系列的實驗和觀察,逐步認識到半導體中電流放大效應產生的原因。布拉頓發現,在鍺片的底面接上電極,在另壹面插上細針並通上電流,然後讓另壹根細針盡量靠近它,並通上微弱的電流,這樣就會使原來的電流產生很大的變化。微弱電流少量的變化,會對另外的電流產生很大的影響,這就是“放大”作用。
布拉頓等人,還想出有效的辦法,來實現這種放大效應。他們在發射極和基極之間輸入壹個弱信號,在集電極和基極之間的輸出端,就放大為壹個強信號了。在現代電子產品中,上述晶體三極管的放大效應得到廣泛的應用。
巴丁和布拉頓最初制成的固體器件的放大倍數為50左右。不久之後,他們利用兩個靠得很近(相距0.05毫米)的觸須接點,來代替金箔接點,制造了“點接觸型晶體管”。1947年12月,這個世界上最早的實用半導體器件終於問世了,在首次試驗時,它能把音頻信號放大100倍,它的外形比火柴棍短,但要粗壹些。
在為這種器件命名時,布拉頓想到它的電阻變換特性,即它是靠壹種從“低電阻輸入”到“高電阻輸出”的轉移電流來工作的,於是取名為trans-resistor(轉換電阻),後來縮寫為transistor,中文譯名就是晶體管。
由於點接觸型晶體管制造工藝復雜,致使許多產品出現故障,它還存在噪聲大、在功率大時難於控制、適用範圍窄等缺點。為了克服這些缺點,肖克萊提出了用壹種“整流結”來代替金屬半導體接點的大膽設想。半導體研究小組又提出了這種半導體器件的工作原理。
1950年,第壹只“PN結型晶體管”問世了,它的性能與肖克萊原來設想的完全壹致。今天的晶體管,大部分仍是這種PN結型晶體管。(所謂PN結就是P型和N型的結合處。P型多空穴。N型多電子。)
1956年,肖克利、巴丁、布拉頓三人,因發明晶體管同時榮獲諾貝爾物理學獎。