1) Amorphous SnO2–SiO2 thin films with reticular porous morphology for lithium-ion batteries,J. Zhang, L. B. Chen, C. C. Li, and T. H. Wang, Appl. Phys. Lett. 93, 264102 (2008).
2) Edge-truncated cubic platinum nanoparticles as anode catalysts for direct methanol fuel cells, Y. G. Liu, S. L. Shi, X. Y. Xue, J. Y. Zhang, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett. 92, 203105 (2008)
3) Degenerate doping induced metallic behaviors in ZnO nanobelts, Qing Wan, Jin Huang, Aixia Lu, and Taihong Wang, Appl. Phys. Lett. 93, 103109 (2008)
4) Branched SnO2 nanowires on metallic nanowire backbones for ethanol sensors application ,Qing Wan, Jin Huang, Zhong Xie, Taihong Wang, Eric N. Dattoli, and Wei Lu ,Appl. Phys. Lett. 92, 102101 (2008)
5) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, LIZENG GAO, JIE ZHUANG, LENG NIE, JINBIN ZHANG, YU ZHANG, NING GU,TAIHONG WANG, JING FENG, DONGLING YANG, SARAH PERRETT1 AND XIYUN YAN, Nature Nanotechnology, 2, 577(2007)
6) Controllable Fabrication and Electrical Performance of Single Crystalline Cu2O Nanowires with High Aspect Ratios,Yiwei Tan, Xinyue Xue, Qing Peng, Heng Zhao, Taihong Wang, and Yadong Li, Nanoletters 7,3723(2007)
7) Shot Noise with Interaction Effects in Single-Walled Carbon Nanotubes, F. Wu,P. Queipo, A. Nasibulin, T. Tsuneta, T. H. Wang, E. Kauppinen,and P. J. Hakonen, Phys. Rev. Lett.99,156803(2007)
8) Degenerate doping induced metallic behaviors in ZnO nanobelts, Qing Wan, Jin Huang, Aixia Lu, and Taihong Wang, APPLIED PHYSICS LETTERS 93, 03109, 2008
9) Anomalous photoconductivity of CeO2 nanowires in air,X. Q. Fu, C. Wang, P. Feng, andT. H. Wang, Appl. Phys. Lett. 91, 073104 (2007)
10)Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature, C. C. Li, Z. F. Du, L. M. Li, H. C. Yu, Q. Wan, and T. H. Wang, Appl. Phys. Lett. 91, 032101 (2007)
11)Extremely high oxygen sensing of individual ZnSnO3 nanowires arising from grain boundary barrier modulation,X. Y. Xue, P. Feng, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett. 91, 022111 (2007)
12)Room-temperature oxygen sensitivity of ZnS nanobelts,Y. G. Liu, P. Feng, X. Y. Xue, S. L. Shi, X. Q. Fu, C. Wang, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett. 90, 042109(2007).
13)Highly sensitive ethanol sensors based on {100}-bounded In2O3 nanocrystals due to face contactP. Feng, X. Y. Xue, Y. G. Liu, and T. H. Wang, Appl. Phys. Lett. 89, 243514 (2006)
14)Vertically aligned tin-doped indium oxide nanowire arrays: Epitaxial growth and electron field emission properties Q. Wan, P. Feng, and T. H. Wang, Appl. Phys. Lett. 89, 123102,2006
15)Achieving fast oxygen response in individual -Ga2O3 nanowires by ultraviolet illumination, P. Feng, X. Y. Xue, Y. G. Liu, Q. Wan, andT. H. Wang, Appl. Phys. Lett. 89, 112114,2006
16)Extremely stable field emission from AlZnO nanowire arrays X. Y. Xue, L. M. Li, H. C. Yu, Y. J. Chen, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett. 89, 043118,2006
17)Electrical transport through individual nanowires with transverse grain boundaries, X. Y. Xue, P. Feng, C. Wang, Y. J. Chen, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett. 89, 022115,2006
18)Comment on “A transparent metal: Nb-doped anatase TiO2” Q. Wan, and T. H. Wang, Appl. Phys. Lett. 88, 226102,2006
19)Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires,X. Y. Xue, Y. J. Chen, Y. G. Liu, S. L. Shi, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett. 88, 201907,2006
20) In situ synthesis of In2O3 nanowires with different diameters from indium film,Y. X. Liang, S. Q. Li, L. Nie, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett. 88, 193119,2006
21) Electronic transport characteristics through individual ZnSnO3 nanowires, X. Y. Xue, Y. J. Chen, Q. H. Li, C. Wang, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett. 88, 182102,2006
22) In2O3 nanowires grown from Au/ In film on glass, S. Q. Li, Y. X. Liang, C. Wang, X. Q. Fu, and T. H. Wang, Appl. Phys. Lett. 88, 163111,2006
23) IndividualGa2O3 nanowires as solar-blind photodetectors, P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang,Appl. Phys. Lett. 88, 153107,2006
24) Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity,Y. J. Chen, L. Nie, X. Y. Xue, Y. G. Wang, and T. H. Wang,Appl. Phys. Lett. 88, 083105,2006
25) Nonlinear characteristics of the Fowler–Nordheim plot for field emission from In2O3 nanowires grown on InAs substrate,S. Q. Li, Y. X. Liang, and T. H. Wang,Appl. Phys. Lett. 88,053107, 2006
26) Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods,Y. J. Chen, X. Y. Xue, Y. G. Wang, and T. H. Wang,Appl. Phys. Lett. 87,233503, 2005
27) Contact-controlled sensing properties of flowerlike ZnO nanostructures, P. Feng, Q. Wan, and T. H. Wang,Appl. Phys. Lett. 87,213111, 2005
28) Electric-field-aligned vertical growth and field emission properties of In2O3 nanowires, S. Q. Li, Y. X. Liang, and T. H. Wang,Appl. Phys. Lett. 87,143104, 2005
29) Enhanced photocatalytic activity of ZnO nanotetrapods, Q. Wan, T. H. Wang, and J. C. Zhao, Appl. Phys. Lett. 87,083105, 2005
30) Anomalous electrorheogical behavior of ZnO nanowires, P. Feng, Q. Wan, X. Q. Fu, and T. H. Wang,Appl. Phys. Lett. 87,033114, 2005
31) Abnormal Temperature Dependence of Conductance of Single Cd-Doped ZnO Nanowires,Q. H. Li, Q. Wan, Y. G. Wang, and T. H. Wang,Appl. Phys. Lett. 86,263101, 2005
32)Synthesis and ethanol sensing properties of ZnSnO3 nanowires,X. Y. Xue, Y. J. Chen, Y. G. Wang, and T. H. Wang,Appl. Phys. Lett. 86,233101, 2005
33)Optoelectronic characteristics of single CdS nanobelts Q. H. Li, T. Gao, and T. H. Wang,Appl. Phys. Lett. 86,193109, 2005
34) CdS nanobelts as photoconductors,T. Gao, Q. H. Li, and T. H. Wang, Appl. Phys. Lett. 86,173105, 2005
35)In situ growth of nanowire on the tip of a carbon nanotube under strong electric field, Y. G. Wang, Q. H. Li, T. H. Wang,X. W. Lin,V. P. Dravid ,and S. X. Zhou, Appl. Phys. Lett. 86,133103, 2005
36)Adsorption and desorption of oxygen probed from ZnO nanowire films by transient photocurrent measurements, Q. H. Li, T. Gao, and T. H. Wang, Appl. Phys. Lett. 86,123117, 2005
37)Oxygen sensing characteristics of individual ZnO nanowire transistors,Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang,Appl. Phys. Lett. 85(26),6389-6391, (2004).
38) Field-Emission from Long SnO(2) Nanowire Arrays,Y. J. Chen, Q. H. Li, Y. X. Liang, T. H. Wang, Q. Zhao and D. P. Yu Appl. Phys. Lett. 85,5682-5684, (2004).
39)Single-crystalline tin-doped indium oxide whiskers: Synthesis and characterization, Q. Wan, Z. T. Song, S. L. Feng, T. H. Wang, Appl. Phys. Lett. 85(20) 4759-4761, (2004).
40)Sonochemical synthesis of SnO2 nanobelt/CdS nanoparticle core/shell heterostructures, Tao Gao and Taihong Wang Chem. Commun. 2004,2558-2559,
41) Metastable Vanadium Dioxide Nanobelts: Hydrothermal Synthesis, Electrical Transport, and Magnetic Properties, Junfeng Liu, Qiuhong Li, Taihong Wang, Dapeng Yu, and Yadong Li, Angew. Chem. Int. Ed. 43, 5048 – 5052, (2004).
42) Thin film transistors fabricated by in situ growth of SnO2 nanobelts on Au/Pt electrodes, Q. H. Li, Y. J. Chen, Q. Wan, and T. H. Wang, Appl. Phys. Lett. 85, (10), 1805-1807, (2004).
43) Low-resistance gas sensors realized from multi-walled carbon nanotubes coated with a thin tin oxide layer, Y. X. Liang, Y. J. Chen, and T. H. Wang, Appl. Phys. Lett. 85, (4), 666-668(2004).
44) Stable field emission from tetrapod-like ZnO nanostructures, Q. H. Li, Q. Wan, Y. J. Chen, T. H. Wang, H. B. Jia and D. P. Yu, Appl. Phys. Lett. 85, (4), 636-638(2004).
45) Catalyst-assisted vapor-liquid-solid growth of single-crystal CdS nanobelts and their luminescence properties, Tao Gao and Taihong Wang, J. Phys. Chem. B 108,20045-20049(2004)
46) Electronic Transport Through Individual ZnO Nanowires,Q. H. Li, Q. Wan,Y. X. Liang, and T. H. Wang,Appl. Phys. Lett. 84, (22), 4556-4558 (2004).
47) Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Q. Wan Y. J. Chen, S. D. Luo, and T. H. Wang, X. L. He, and J. P. Li,C. L. Lin, Appl. Phys. Lett. 84, (18), 3654-3656 (2004)
48) Current saturation in multiwalled carbon nanotubes by large bias, Y. X. Liang, Q. H. Li, and T. H. Wang, Appl. Phys. Lett. Appl. Phys. Lett. 84, (17), 3379-3381 (2004)
49) Microwave absorption properties of the ZnO nanowire-polyester composites Y.J. Chen M.S. Cao, T. H. Wang ,Q. Wan, Appl. Phys. Lett. 84, (17), 3367-33369 (2004)
50) Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowire, Q. Wan, Q. H. Li , Y. J. Chen ,T. H. Wang ,X. L. He, X. G. Gao, and J. P. Li, Appl. Phys. Lett. 84, (16), 3085-3087 (2004)
51) Room-temperature hydrogen storage characteristics of ZnO nanowires, Q. Wan, C.L.Lin, X. B. Yu, W. L. Liu, and T.H.Wang, Appl. Phys. Lett. 84, (1), 124-126 (2004)
52) Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation, Q. Wan, K. Yu, T.H.Wang, and C.L.Lin, Appl. Phys. Lett. 83, (11), 2253-2255 (2003)
53) Characteristics of a field-effect transistor with stacked InAs quantum dots , T. H. Wang, H. W. Li, and J. M. Zhou, Appl. Phys. Lett. 82, (18), 3092-3094, (2003)
54) Synthesis and optical properties of semiconducting beta-FeSi2 nanocrystals,Q. Wan, T. H. Wang, C. L. Lin, Appl. Phys. Lett. 82,(19) 3224-3226, 2003
55) Structural and electrical characteristics of Ge nanoclusters embedded in Al2O3 gate dielectric, Q. Wan, C. L. Lin, W. L. Liu, and T. H. Wang, Appl. Phys. Lett. 82,(26) 4708-4710, 2003
56) Memory and negative photoconductivity effects of Ge nanocrystals embedded in ZrO2 /Al2O3 gate dielectrics Q. Wan, N. L. Zhang, W. L. Liu, C. L. Lin, and T. H. Wang, Appl. Phys. Lett. 83,(1) 138-140,2003
57) Linear and third-order nonlinear optical absorption of amorphous Ge nanoclusters embedded in Al2O3 matrix synthesized by electron-beam coevaporation, Q. Wan, C. L. Lin, N. L. Zhang, and W. L. Liu , G. Yang and T. H Wang, Appl. Phys. Lett, Vol. 82, 19, (2003) 3162-3164
58) Synthesis of large-area germanium cone-arrays for application in electron field emission, Q. Wan, T. H. Wang,T. Feng, X. H. Liu, and C. L. Lin, Appl. Phys. Lett. 81,(17), 3281-3283, (2002).
59) Resonant tunneling of Si nanocrystals embedded in Al2O3 matrix synthesized by vacuum electron-beam coevaporation, Q. Wan, T. H. Wang, M. Zhu, and C. L. Lin, Appl. Phys. Lett. 81,(3), 538-540, (2002).
60) Single-electron transistors with point-contact channels,T. H. Wang, H. W. Li, and J. M. Zhou,Nanotechnology 2002, 13, 221.
61) Designing two-dimensional electron gases in GaAs/InGaAs/AlGaAs, d-doped AlGaAs/GaAs, and AlGaAs/InGaAs/GaAs heterostructures for single electron transistor application. Y. Fu, T.H.Wang, and M. Willander, J. Appl. Phys. 89(3),1759-1763, (2001).
62) Formation and charge control of a quantum dot by etched trenches and multiple gates,Y.Fu, M.Willander, T.H.Wang,Appl. Phys.A,74(2002) 741-745
63) High-vacuum electron-beam co-evaporation of Si nanocrystals embedded in Al2O3 matrix,Q.Wan, N.L.Zhang, X.Y.Xie, T.H.Wang, C.L.Lin,Appl. Surf. Sci. 191(2002)171-175
64) Charging effect in InAs self-assembled quantum dots, T. H. Wang, H. W. Li, and J. M. Zhou, Appl. Phys. Lett. 79, (10), 1537-1539, (2001)
65) Mismatch and chemical composition analysis of vertical InGaAs quantum-dot arrays by transmission electron microscopy,. Q. Zhang , J. Zhu, X.W Ren, H.W. Li, and T. H.Wang, Appl. Phys. Lett. 78(24), 3830, (2001)
66) Etching trenches to effectively create quantum wires for single-electron transistor applications Y. Fu, M. Willander, and T.H.Wang, Appl. Phys. Lett. 78(23), 3705, (2001).
67) Si single-electron transistors with in-plane point-contact metal gates. T. H. Wang , H. W. Li, and J. M. Zhou, Appl. Phys. Lett. 78(15),2160, (2001).
68) Single-electron charging in a parallel dot structure, T. H. Wang and Y. Aoyagi, Appl. Phys. Lett. 78(5) 634(2001).
69) Large optical third-order nonlinearity of composite thin film of carbon nanotubes and BaTiO3, Guowei Lu, Bolin Cheng, Hong Shen, Yujin Chen, Taihong Wang, Zhenghao chen, Huibin Lu, Kuijuan Jin, Yueliang Zhou, Guozhen Yang, Chemical Physics Letters, 407(2005)397-401
70) Large-scale controlled synthesis of silica nanotubes using zinc oxide nanowires as templates Yujin Chen, Xinyu Xue and Taihong Wang, Nanotechnology 16(2005)1978-1982
71) Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application, Q Wan and T. H. Wang Chem. Commun. 2005, 3841-3843
72)Vapor phase growth of ZnO nanorod-nanobelt junction arrays, Tao Gao and Taihong Wang, J. Nanosci. Nanotech. 2005,5(7)1120-1124
73)Substrate-free growth, characterization nd growth mechanism of ZnO nanorod lose-packed arrays,Zao Yang, QuanHui Liu, HongChun Yu, Binsuo Zou,YanGuoWang and T H Wang,Nanotechnology 19 (2008) 035704
74) ltralow threshold field emission from ZnO nanorod arrays grown on ZnO film at low temperature,L M Li, Z F Du, C C Li, J Zhang and T H Wang, Nanotechnology 18 (2007) 355606
75) Photocurrent characteristics of individual ZnGa2O4 nanowires,P. Feng, J. Y. Zhang,Q. Wan and T. H. Wang, JOURNAL OF APPLIED PHYSICS 102, 074309 2007 專利號
專利類型 申請日 授權日 專利名稱 發明人 證書發明專利
2004-12-24
2007-10-3 碳納米管的生物學應用 閻錫蘊、高利增、王太宏、聶棱 1發明專利
03136606.6 2003-5-19
2006-8-23 壹種納米孔氧化鋁模板的生產工藝 符秀麗、江南、王太宏 1發明專利
03131082.6 2003-5-14
2006-4-12 壹種提高納米材料電性能的方法 李秋紅、王太宏 1發明專利
03136105.6 2003-5-14
2006-8-9 壹種高性能納米晶體管的制備方法 李秋紅、王太宏 1發明專利
02149405.3 2003-2-14
2006-9-13 基於庫侖阻塞原理設計的單電子三值存儲器及其制備方法 孫勁鵬、王太宏 1發明專利
02149483.5 2002-11-21 具有多個穩定存儲狀態的單電子存儲器及制法 孫勁鵬、王太宏 1發明專利
02131272.9 2002-9-24
2006-1-11 用垂直結構的碳納米管晶體管設計的單電子存儲器及制法 孫勁鵬、王太宏 1發明專利
02131274.5 2002-9-24
2006-6-28 兩端垂直結構的碳納米管晶體管做的單電子存儲器及制法 孫勁鵬、王太宏 1發明專利
02125967.4 2002-8-7
2005-11-23 以庫侖阻塞原理設計的單電子存儲器及其制備方法 孫勁鵬、王太宏 1發明專利
02125880.5 2002-8-1 基於碳納米管單電子晶體管設計的單電子存儲器及制法 孫勁鵬、王太宏 1 02123969.X 2002-7-11
2006-6-28 可在室溫下工作的單電子存儲器及制備方法 孫勁鵬、王太宏 1發明專利
02123970.3 2002-7-11
2006-4-26 具有高集成度的單電子存儲器及其制備方法 孫勁鵬、王太宏 1發明專利
02123661.5 2002-7-8
2006-3-29 碳納米管半加器及其制備工藝 趙繼剛、王太宏 1發明專利
02123860.X 2002-7-5
2006-1-11 碳納米管式集成場效應管及其制備工藝 趙繼剛、王太宏 1發明專利
02123862.6 2002-7-5
2006-3-29 碳納米管邏輯“或”門器件及其制備方法 趙繼剛、王太宏 1發明專利
02123863.4 2002-7-5
2006-1-11 利用碳納米管制作的邏輯“非”門器件 趙繼剛、王太宏 1發明專利
02123864.2 2002-7-5
2006-4-19 利用碳納米管制作的隨機存儲器及制備方法 趙繼剛、王太宏 1發明專利
02123865.0 2002-7-5
2006-6-28 具有單壁碳納米管結構的“與”門邏輯器件及其制作方法 趙繼剛、王太宏 1發明專利
02123861.8 2002-7-5
2006-1-11 碳納米管“或否”邏輯器件 趙繼剛、王太宏 1發明專利
02123459.0 2002-6-28
2005-7-6 復合量子點器件及制備方法 竺雲、王太宏 1發明專利
02123464.7 2002-6-28
2005-7-6 量子點器件的三端電測量方法 竺雲、王太宏 1發明專利
02120849.2 2002-6-5
2006-8-16 利用碳納米管設計的非揮發性隨機存儲器及制備方法 孫勁鵬、王太宏 1發明專利
02120847.6 2002-6-5
2006-4-19 具有碳納米管結構的單電子存儲器及制備方法 孫勁鵬、王太宏 1發明專利
02120848.4 2002-6-5
2006-6-28 利用碳納米管制備的單電子存儲器及制備方法 孫勁鵬、王太宏 1發明專利
02120850.6 2002-6-5
2006-6-28 利用碳納米管制備的單電子存儲器及制備方法 孫勁鵬、王太宏 1發明專利
01101944.1 2001-1-18
2004-10-6 對電荷超敏感的庫侖計及其制備方法 王太宏 1發明專利
01101945.X 2001-1-18
2004-10-6 有自校準功能的對電荷超敏感的庫侖計及其制備方法 王太宏 1發明專利
01100835.0 2001-1-15
2004-8-4 點接觸平面柵型單電子晶體管及其制備方法(壹) 王太宏 1發明專利
01100834.2 2001-1-15
2004-8-4 點接觸平面柵型單電子晶體管及其制備方法(二) 王太宏 1發明專利
00133517.0 2000-11-9
2004-7-28 壹種單電子晶體管及其制備方法 王太宏 1發明專利
實用新型
專利號
專利類型申請日 授權日 專利名稱 發明人 證書實用新型
01200510.X2001-1-15
2002-6-19 單電子晶體管 王太宏 1
02285490.82003-2-14
2004-3-10 單電子三值存儲器 孫勁鵬、王太宏1實用新型
02289264.82002-11-22
2003-8-13 使用多隧穿結結構的單電子晶體管的多值單電子存儲器 孫勁鵬、王太宏 1實用新型
02257077.22002-9-24
2003-9-3 用碳納米管晶體管設計的高集成度單電子存儲器 孫勁鵬、王太宏 1實用新型
02257080.22002-9-24
2003-9-24 利用兩端垂直結構的碳納米管晶體管設計的單電子存儲器 孫勁鵬、王太宏 1實用新型
02244310.X2002-8-7
2003-8-20 用碳納米管單電子晶體管和碳納米管晶體管設計的存儲器 孫勁鵬、王太宏 1實用新型
02244235.92002-8-1
2003-8-20 基於碳納米管單電子晶體管設計的單電子存儲器 孫勁鵬、王太宏 1實用新型
02240127.X2002-7-11
2003-7-23 可在室溫下工作的單電子存儲器 孫勁鵬、王太宏1實用新型
02240125.32002-7-11
2003-8-13 壹種平面磁控濺射靶 馬利民、王太宏、張德安 1實用新型
02240126.12002-7-11
2003-8-13 可在室溫下工作的具有高集成度的單電子存儲器 孫勁鵬、王太宏 1實用新型
02239614.42002-7-5
2003-8-20 碳納米管“或”門邏輯器件 趙繼剛、王太宏 1實用新型
02239615.22002-7-5
2003-6-18 碳納米管式集成場效應管 趙繼剛、王太宏 1實用新型
02239613.62002-7-5
2003-8-13 具有碳納米管結構的隨機存儲器 趙繼剛、王太宏 1實用新型
02239612.82002-7-5
2003-8-13 單壁碳納米管“與”門邏輯器件 趙繼剛、王太宏 1實用新型
02238032.92002-6-28
2003-4-23 具有復合結構的量子點器件 竺雲、王太宏 1實用新型
02237210.52002-6-5
2003-4-23 具有碳納米管結構的非揮發性隨機存儲器 孫勁鵬、王太宏 1實用新型
02237211.32002-6-5
2003-5-21 具有碳納米管結構的單電子存儲器 孫勁鵬、王太宏 1實用新型
01201857.02001-1-18
2001-11-28 對電荷超敏感的庫侖計 王太宏 1實用新型
01201858.92001-1-18
2001-11-28 有自校準功能的對電荷超敏感的庫侖計 王太宏 1實用新型
01200511.82001-1-15
2002-6-19 點接觸平面柵型單電子晶體管 王太宏 1實用新型
申請了59項專利(已授權50項),在應用物理研究最權威的期刊Applied Physics Letters上就發表了80多篇的高水平論文。大部分實驗結果都已被國外實驗室重復和驗證,每年文章的單篇引用率達50次。超敏感探測文章被26篇專著引用,SCI他引超過3000次