當前位置:律師網大全 - 專利申請 - 石墨烯晶體管的最小的晶體管

石墨烯晶體管的最小的晶體管

矽材料的加工極限壹般認為是10納米線寬。受物理原理的制約,小於10納米後不太可能生產出性能穩定、集成度更高的產品。然而英國科學家發明的新型晶體管將延長摩爾定律的壽命。該晶體管有望為研制新型超高速計算機芯片帶來突破。值得壹提的是世界最小晶體管的主要研制者也是於2004年開發出石墨烯的人,他們就是英國曼切斯特大學物理和天文學系的安德烈·K·海姆(Andre Geim)教授和科斯佳·諾沃謝洛夫(Kostya Novoselov)研究員。正是因為開發出了石墨烯,他們獲得了2008年諾貝爾物理獎的提名。

由上述兩人率領的英國科學家開發出的世界最小晶體管僅1個原子厚10個原子寬,所采用的材料是由單原子層構成的石墨烯。石墨烯作為新型半導體材料,近年來獲得科學界的廣泛關註。英國科學家采用標準的晶體管工藝,首先在單層石墨膜上用電子束刻出溝道。然後在所余下的被稱為“島”的中心部分封入電子,形成量子點。石墨烯晶體管柵極部分的結構為10多納米的量子點夾著幾納米的絕緣介質。這種量子點往往被稱為“電荷島”。由於施加電壓後會改變該量子點的導電性,這樣壹來量子點如同於標準的場效應晶體管壹樣,可記憶晶體管的邏輯狀態。另據報導,英國曼切斯特大學安德烈·海姆教授領導的科研團隊,除了已開發出了10納米級可實際運行的石墨烯晶體管外,他們尚未公布的最新研究成果還有,已研制出長寬均為1個分子的更小的石墨烯晶體管。該石墨烯晶體管實際上是由單原子組成的晶體管。

神奇的半導體材料

石墨烯開發者之壹的曼切斯特大學諾沃謝洛夫博士指出,石墨烯是研究領域的“金礦”,在很長壹段時間內,研究人員將會陸續“開采”出新的研究成果。

那麽石墨烯又為何物呢? 石墨烯(Graphene)是壹種從石墨材料中剝離出的單層碳原子薄膜,是由單層六角元胞碳原子組成的蜂窩狀二維晶體。換言之,它是單原子層的石墨晶體薄膜,其晶格是由碳原子構成的二維蜂窩結構。這種石墨晶體薄膜的厚度只有0.335納米,將其20萬片薄膜疊加到壹起,也只相當壹根頭發絲的厚度。該材料具有許多新奇的物理特性。石墨烯是壹種零帶隙半導體材料,具有遠比矽高的載流子遷移率, 並且從理論上說,它的電子遷移率和空穴遷移率兩者相等,因此其n型場效應晶體管和p型場效應晶體管是對稱的。還有,因為其具有零禁帶特性,即使在室溫下載流子在石墨烯中的平均自由程和相幹長度也可為微米級, 所以它是壹種性能優異的半導體材料。此外,石墨烯還可用於制造復合材料、電池/超級電容、儲氫材料、場發射材料以及超靈敏傳感器等。因此科研人員爭先恐後地投入到如何制備和表征其物理、化學、機械性能的研究。

科學家們對石墨烯感興趣的原因之壹是受到碳納米管科研成果的啟發。石墨烯很有可能會成為矽的替代品。事實上,碳納米管就是卷入柱面中的石墨烯微片,與碳納米管壹樣,其具有優良的電子性能,可用來制成超高性能的電子產品。它優於碳納米管的是,在制作復雜電路時,納米管必須經過仔細篩選和定位,目前還沒有開發出非常好的方法,而這對石墨烯而言則要容易得多。

矽基的微計算機處理器在室溫條件下每秒鐘只能執行壹定數量的操作,然而電子穿過石墨烯幾乎沒有任何阻力,所產生的熱量也非常少。此外,石墨烯本身就是壹個良好的導熱體,可以很快地散發熱量。由於具有優異的性能,由石墨烯制造的電子產品運行的速度要快得多。有關專家指出: “矽的速度是有極限的,只能達到現在這個地步,無法再提高了。”目前,矽器件的工作速度已達到千兆赫茲的範圍。而石墨烯器件制成的計算機的運行速度可達到太赫茲,即1千兆赫茲的1000倍。如果能進壹步開發,其意義不言而喻。

除了讓計算機運行得更快,石墨烯器件還能用於需要高速工作的通信技術和成像技術。有關專家認為,石墨烯很可能首先應用於高頻領域,如太赫茲波成像,其壹個用途是用來探測隱藏的武器。然而,速度還不是石墨烯的惟壹優點。矽不能分割成小於10納米的小片,否則其將失去誘人的電子性能。與矽相比,石墨烯分割成壹個納米的小片時,其基本物理性能並不改變,而且其電子性能還有可能異常發揮。

研究成果陸續發布

馬裏蘭大學納米技術和先進材料中心的物理學教授Michael S. Fuhrer領導的科研小組的實驗表明,石墨烯的電子遷移率不隨溫度而改變。他們在50開氏度和500開氏度之間測量了石墨烯的電子遷移率,發現無論溫度怎麽變化,電子遷移率大約都是150000 cm2/Vs。而矽的電子遷移率為1400 cm2/Vs。電子在石墨烯中的傳輸速度比矽快100倍,因而未來的半導體材料是石墨烯而不是矽。這將使開發更高速的計算機芯片和生化傳感器成為可能。他們還首次測量了石墨烯中電子傳導的熱振動效應,實驗結果顯示,石墨烯中電子傳導的熱振動效應非常微小。

中科院數學與系統科學研究院明平兵研究員及合作者劉芳、李巨的計算結果表明,預測石墨烯的理想強度為110GPa~121GPa。這意味著石墨烯是目前人類已知的最為牢固的材料。

美國哥倫比亞大學James Hone和Jeffrey Kysar研究組在2008年7月《科學》雜誌中宣布,石墨烯是現在世界上已知的最為堅固的材料。他們發現,在石墨烯樣品微粒開始碎裂前,其每100納米距離上可承受的最大壓力達到約2.9微牛。這壹結果相當於,施加55牛頓的壓力才能使1米長的石墨烯斷裂。

如果能制作出厚度相當於塑料包裝袋(厚度約100納米)的石墨烯,那麽需要施加約兩萬牛頓的壓力才能將其扯斷。這意味著石墨烯比鉆石還要堅硬。

2008年9月26日的《科學》 雜誌上公布,中國科學院物理研究所/北京凝聚態物理國家實驗室固態量子信息實驗室的博士生蔡偉偉赴美國得克薩斯大學奧斯丁分校期間,在Rodney Ruoff教授和陳東敏研究員指導下,制備出高品質13C同位素合成石墨, 還進壹步把13C-石墨解離成13C-石墨烯及其衍生物13C-氧化石墨烯。分析這種材料揭示出了爭議已久的氧化石墨烯化學結構。

低噪聲 石墨烯晶體管

2008年3月IBM沃森研究中心的科學家在世界上率先制成低噪聲石墨烯晶體管。

普通的納米器件隨著尺寸的減小,被稱做1/f的噪音會越來越明顯,使器件信噪比惡化。這種現象就是“豪格規則(Hooge's law)”,石墨烯、碳納米管以及矽材料都會產生該現象。因此,如何減小1/f噪聲成為實現納米元件的關鍵問題之壹。IBM通過重疊兩層石墨烯,試制成功了晶體管。由於兩層石墨烯之間生成了強電子結合,從而控制了1/f噪音。IBM華裔研究人員Ming-Yu Lin的該發現證明,兩層石墨烯有望應用於各種各樣的領域。

2008年5月美國喬治亞科技學院教授德希爾與美國麻省理工學院林肯實驗室合作在單壹芯片上生成的幾百個石墨烯晶體管陣列。

2008年6月底日本東北大學電氣通信研究所末光真希教授在矽襯底上生成單層石墨膜, 即石墨烯。可在不縮小情況下實現器件高速度工作,例如可用於制作每秒1012赫茲級高頻器件和超級微處理器。單層石墨膜很難制作,為厚度僅為壹個碳原子的蜂窩狀石墨結構。末光教授的團隊控制碳化矽形成時的結晶方向和矽襯底切割的結晶方向,得到100×150平方微米面積的兩層石墨膜,其晶格畸變率僅為1.7%。其他科研團隊利用傳統方法的晶格畸變率為20%,因而不能制成可實際應用的器件。末光教授的方法是將碳化矽襯底在真空條件下加熱至1000多度,除去矽而余下的碳,通過自組形式形成單層石墨膜。

  • 上一篇:《生死線》的演員陣容
  • 下一篇:數字嬰兒的笑話
  • copyright 2024律師網大全